PH-218 Analog & Digital Electronics Assignment-2 (Due date: 20th Jan 2011)

1. Find the transistor current in the circuit shown below if I_{CO} = 20nA, β =100.

2. Determine the Q-point for the CE amplifier given in figure, if $R_1 = 1.5K \Omega$ and $R_2 = 7K \Omega$. A 2N3904 transistor is used with $\beta = 180$, $R_E = 100\Omega$ and $R_C = R_{load} = 1K \Omega$. Also determine the $P_{out}(ac)$ and the dc power delivered to the circuit by the source.

- 3. In potential divider bias circuit, what will happen if -
 - (a) Resistance R2 is shorted
 - (b) Resistance R2 is open
 - (c) Resistance R1 is shorted
 - (d) Resistance R1 is shorted

- 4. Design a common emitter amplifier circuit that has a load resistance (R_c) of 1.2kohm and a supply voltage of 10V. Also find the value of the Emitter resistor, R_E with a voltage drop of 1V across it. Calculate the values of all the other circuit resistors assuming an NPN silicon transistor.
- 5. Calculate the value of stability factor for the above mentioned CE amplifier and give your feedback to further improve the stability, if needed.
- 6. Develop a program in any programming language (MATLAB or C or C++) to design a CE amplifier and to check the stability.